Homework 1 Solutions

Ch. 3: 6, 8, 10, 12, 22, 24, 46

3.6

(a) $(3.5+8.0-5.0) \pm(0.1+0.2+0.4)=6.5 \pm 0.7$
(b) $\quad(3.5 \times 8.0)\left(1 \pm\left(\frac{0.1}{3.5}+\frac{0.2}{8.0}\right)\right)=28.0(1 \pm 0.054)=28.0 \pm 1.5$
(c) $\frac{8.0}{5.0}\left(1 \pm\left(\frac{0.2}{8.0}+\frac{0.4}{5.0}\right)\right)=1.60(1 \pm 0.11)=1.60 \pm 0.18$
(d) $\frac{3.5 \times 8.0}{5.0}\left(1 \pm\left(\frac{0.1}{3.5}+\frac{0.2}{8.0}+\frac{0.4}{5.0}\right)\right)=5.60(1 \pm 0.13)=5.6 \pm 0.7$

3.8

(a) Let n be a positive integer. Then, the $n+l$ th term will contain a factor of $n-n=0$ in the numerator, and will therefore be zero. All subsequent terms will also contain this factor, and will therefore also be zero. So, the series becomes a finite polynomial.

For $n=2: \quad(1+x)^{2}=1+n x+\frac{1}{2} n(n-1) x^{2}=1+2 x+x^{2}$
For $n=3: \quad(1+x)^{3}=1+n x+\frac{1}{2} n(n-1) x^{2}+\frac{1}{6} n(n-1)(n-2) x^{3}=1+3 x+3 x^{2}+x^{3}$
(b) For $n=-1$, the series is:

$$
(1+x)^{-1}=1+n x+\frac{1}{2} n(n-1) x^{2}+\frac{1}{6} n(n-1)(n-2) x^{3}+\ldots=1-x+x^{2}-x^{3}+\ldots=\sum_{m=0}^{\infty}(-x)^{m}
$$

Comparing first-order approximation, $(1+x)^{-1} \approx 1-x$, to exact value:

$$
\begin{array}{llll}
x=0.5 & 1-x=0.5 & 1 /(1+x)=2 / 3 & \text { Error }=25 \% \\
x=0.1 & 1-x=0.9 & 1 /(1+x)=10 / 11 & \text { Error }=1.0 \% \\
x=0.01 & 1-x=0.99 & 1 /(1+x)=100 / 101 & \text { Error }=0.010 \%
\end{array}
$$

Clearly, the \% error rapidly gets very small as x approaches zero.

3.10

(a) The thickness of one card is $\frac{0.590 \pm 0.005 \text { in }}{52}=(1.135 \pm 0.010) \times 10^{-2}$ in
(b) The uncertainty is inversely proportional to the number of cards measured (since it is divided by the number of cards). We want an uncertainty of 2×10^{-5} in. That is 5 times less than in part (a), so we need at least 5 decks of cards.

3.12

Since \% uncertainty for x is $0.1 / 4.0=2.5 \%$, we have

$$
\begin{array}{ll}
x^{2}=4.0^{2}(1 \pm 2 \times 0.025)=16.0(1 \pm 0.05)=16.0 \pm 0.08 & 5 \% \text { uncertainty } \\
x^{3}=4.0^{3}(1 \pm 3 \times 0.025)=64.0(1 \pm 0.075)=64 \pm 5 & 7.5 \% \text { uncertainty }
\end{array}
$$

3.22

(a)

$$
P=I V=(2.10 \pm 0.02 A)(1.02 \pm 0.01 \mathrm{~V})=2.10 \times 1.02 W\left(1 \pm \sqrt{\left(\frac{0.02}{2.10}\right)^{2}+\left(\frac{0.01}{1.02}\right)^{2}}\right)
$$

$$
=2.142 W(1 \pm 0.014)=2.14 \pm 0.03 W
$$

(b) $\quad R=V / I=0.485(1 \pm 0.014) \Omega=0.485 \pm 0.007 \Omega$

3.24

$$
\begin{aligned}
& r=\frac{125}{32 \times\left(4 \pi \times 10^{-7} \mathrm{~N} / \mathrm{A}^{2}\right)^{2} \times 72^{2}} \frac{(661 \mathrm{~mm})^{2} \times 45.0 \mathrm{~V}}{(91.4 \mathrm{~mm})^{2}(2.48 \mathrm{~A})^{2}} \times \\
& \times\left(1 \pm \sqrt{4\left(\frac{2}{661}\right)^{2}+\left(\frac{0.2}{45.0}\right)^{2}+4\left(\frac{0.5}{91.4}\right)^{2}+4\left(\frac{0.04}{2.48}\right)^{2}}\right)=(1.83 \pm 0.06) \times 10^{11} \mathrm{C} / \mathrm{kg}
\end{aligned}
$$

3.46

$\frac{\partial q}{\partial x}=y+\frac{2 x}{y} \approx 3.0+\frac{2 \cdot 6.0}{3.0}=7.0 \quad \frac{\partial q}{\partial y}=x-\frac{x^{2}}{y^{2}} \approx 6.0-\frac{36.0}{9.0}=2.0$
Thus, $q=30.0 \pm \sqrt{(7.0 \cdot 0.1)^{2}+(2.0 \cdot 0.1)^{2}}=30.0 \pm 0.7$

